Crowdsourcing game helps diagnose infectious diseases

Lucas Mearian
8 May, 2012
View more articles fromthe author

Malaria Diagnosis Game Interface: the gamer can use the syringe tool to “kill” infected RBCs or use the blood bank button to “bank/collect” all the healthy RBCs.

Researchers at US university UCLA have created an online crowdsourcing game designed to let players help doctors in key areas of the world speed the lengthy process of distinguishing malaria-infected red blood cells from healthy ones.

For instance, the researchers hope that users of the game can help in areas like sub-Saharan Africa, where malaria accounts for some 20 percent of all childhood deaths, The disease, which affects about 210 million people annually worldwide, accounts for almost 40 percent of all hospitalisations throughout Africa.

Typically, malaria is diagnosed by a trained pathologist peering through a conventional light microscope. The time-consuming process can overwhelm researchers in countries that have high numbers of cases and limited resources, UCLA researchers said.

The researchers also noted that a significant percentage of cases reported in sub-Sahara Africa are false positives, which lead to unnecessary and costly treatments and hospitalizations.

The crowdsourcing game, which is free to play, works off the assumption that large groups of non-experts can be trained to recognise microscopic images of infectious disease cells with the accuracy of trained pathologists.

So far, players have been mostly undergraduate UCLA volunteers and they have collectively been able to accurately diagnose malaria-infected red blood cells within 1.25 percent of the accuracy of a pathologist performing the same task, resesarchers said.

“The idea is, if you carefully combine the decisions of people – even non-experts – those decisions become very competitive,” said Aydogan Ozcan, a UCLA associate professor of electrical engineering and bioengineering and an author of the crowd-sourcing research. “One person’s response may be OK, but if you combine 10 to 20 or maybe 50 non-expert gamers together, you improve your accuracy greatly.”

The game was created by researchers at the UCLA Henry Samueli School of Engineering and the Applied Science and David Geffen School of Medicine.

While the game currently focuses on diagnosing malaria, the crowdsourcing and gaming-based platform could be adapted for a variety of other biomedical and environmental tasks, the researchers said.

The game can be played on any computer device ranging from cell phones to personal computers and it can be played by anyone around the world, including children, the researchers said.

By training hundreds and perhaps thousands, of game players to identify malaria, the UCLA crowdsourcing app could lead to rapid and close-to-accurate, diagnoses at virtually no cost, the researchers said.

“The idea is to use crowds to get collectively better in pathologic analysis of microscopic images, which could be applicable to various telemedicine problems,” said Sam Mavandadi, a postdoctoral scholar in Ozcan’s research group and the study’s first author.

How the game works

Before playing the game, each player is given a brief online tutorial and an explanation of what malaria-infected red blood cells typically look like, using sample images.

Then the player goes through a game, in which he or she is shown multiple digital frames of red blood cell images. The player can use a “syringe” tool to “kill” infected cells one-by-one and use a “collect-all” tool to designate the remaining cells in the frame as “healthy.”

Within each frame, there are a certain number of cells whose status (i.e., infected or not) is known by the game but not by the players. These control cell images allow Ozcan’s team to dynamically estimate the performance of gamers as they go through each frame and they also help the team assign a score for every frame the gamer passes through.

“It could eliminate the current overuse and misuse of anti-malarial drugs, improve management of non-malaria fevers by ruling out malaria, lead to better use of existing funds and reduce risks due to long-term side-effects of anti-malarial drugs on patients who don’t need treatment,” said Mavandadi.

Leave a Comment

Please keep your comments friendly on the topic.

Contact us